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Abstract: The reduction of the phos-
phacobaltocenium salt [CoCp*(2,5-
PC4tBu2H2)]�[BPh4]� (3 ; Cp*� penta-
methylcyclopentadienyl) by magnesium
in tetrahydrofuran (THF) furnishes the
stable air-sensitive phosphacobaltocene
[CoCp*(2,5-PC4tBu2H2)] (4) in yields of
up to 80%. The crystal structure of 4
shows long Co�C� and short C��C�

bonds in the phospholyl ligand, consis-

tent with a semi-occupied molecular
orbital (SOMO) having a�� symmetry. A
combined Amsterdam density function-
al (ADF)/photoelectron spectroscopic

study, which confirms this assignment,
gives ionisation energies (IE) of 5.02 eV
from the SOMO and 8.89 eV from the
phosphorus ™lone pair∫. A comparison of
cyclovoltammograms for 3 and the cor-
responding cyclopentadienyl complex
[CoCp*(1,3-C5tBu2H3)]� [BPh4]� (5)
shows that replacing a CH group by an
sp2 phosphorus atom results in an anodic
first reduction potential shift of 0.29 V.
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Introduction

The modification of cyclopentadienyl rings to confer specific
physical, electronic, and steric properties upon metal centres
is becoming one of the most sophisticated areas in organo-
metallic chemistry.[1] The recognition that phosphorus, which
combines moderate electronegativity with relatively strong
and weakly polarized �3-P�C bonds,[2] is well-adapted to
replacing a CR group in cyclopentadienyl ligands has
produced an extensive chemistry of simple diamagnetic
sandwich complexes that contain �5-phospholyls, which have
recently found uses as catalysts for hydroformylation,[3, 4] ring-
opening,[5] cross-coupling[6, 7] and olefin polymerization[8±12]

reactions as well as enantioselective isomerisations,[13, 14]

allylic alkylations,[15±17] copper-catalysed alkylzinc additions
to enones[18] and hydrogenations.[19] Paramagnetic phospha-
metallocene sandwiches are much less well understood, but
they may have potential as unusual ligands and have also been
suggested as building blocks for materials chemistry.[20] Al-

most all of the data pertaining to neutral paramagnetic species
have been obtained from complexes that incorporate highly
substituted di- and triphospholyl ligands (below).[21±26]

We had a number of reasons for wishing to prepare
paramagnetic monophosphametallocenes. Firstly, the rapidly
developing organic chemistry of phospholes provides a pool
of monophospholyl ligands that may be used to stabilize and/
or elaborate any chosen metal centre.[27±29] Simple volatile
phosphametallocenes incorporating mono- rather than di- or
triphospholyl ligands are also ideal systems for studying the
perturbations that result from the presence of the phosphorus
atom in the ring. Finally, neutral, paramagnetic transition-
metal monophosphametallocene sandwiches are very rare.
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The only well-characterized[30] example published to date is a
(crystallographically proven) diphosphachromocene 1,[20] so
that no simple transition-metal monophosphametallocene
sandwich complex with more than 18 valence electrons
(VE) exists. Given that electron-excessive paramagnetic
phosphametallocenes might be expected to have a significant
degree of electron spin delocalised over the phospholyl
ligand, we wished to prepare and study the first mono-
phosphacobaltocene.

Results

Synthesis : The hindered 2,5-di-tert-butylphospholyl ligand 2
was employed in this work. Bulky groups have often been
useful for isolating unusual phosphorus-containing spe-
cies,[31±34] and our previous studies have shown that the tert-
butyl groups in 2 serve both to diminish the potential for
coordination through the phosphorus lone pair[35, 36] and to
lower the tendency of the phospholide anion to undergo redox
chemistry at transition-metal[37] and main-group[38] centres. In
this study, we used the 2,5-di-tert-butylphospholyl ligand,
because it provides access to the only known phosphacobal-
tocenium salt 3.[39] However, the hindrance about phosphorus

may also confer some stability upon the phosphacobaltocene
product.

The desired monophosphacobaltocene 4 may be prepared
conveniently from 3 by reduction [Eq. (1)]. Initial experi-
ments with excess alkali metal resulted in decomposition and,

to date, the most straightforward synthesis of 4 involves
stirring 3 with metallic magnesium in THF. After removal of
the solvent under reduced pressure, extraction into pentane,
filtration and sublimation (70 �C, 1� 10�2 mmHg), 4 is ob-
tained as pure, purple crystals in yields approaching 80%.
Further experiments conducted by 1H and 31P NMR spectro-
scopy indicate that 4 is also found in a mixture of compounds
obtained from the reaction of [Co(acac)Cp*][40] with Li(2,5-
PC4tBu2H2) ¥ 2THF[37] in THF, but this approach provides
material that is difficult to purify and the isolated yield is low.
Whilst solutions of 4 are quite sensitive, the crystalline
phosphacobaltocene may be handled without difficulty for
short periods (1 ± 2 min) in air.

X-ray diffraction : Crystals of phosphacobaltocene 4 suitable
for an X-ray diffraction study were obtained by reduced-
pressure (1� 10�2 mmHg) sublimation at 70 �C and measured
at 150 K. A straightforward refinement revealed a classical
sandwich structure, whose eclipsed ligands straddle a crystal-
lographic mirror plane that lies perpendicular to the phos-
pholyl ligand and bisects the P and Co atoms (Figure 1). Sites
of residual electron density totaling one electron were found
lying between the vertical axis and the C� atoms on the side of
the five-membered rings remote from the cobalt atom.

Figure 1. Molecular structure of [CoCp*(2,5-PC4tBu2H2)] (4). Bond
lengths [ä] Co1�P2, 2.3238(6); Co1�C1, 2.220(1); Co1�C2, 2.110(1);
Co1�C7, 2.101(1); Co1�C8, 2.159(1); Co1�C9, 2.106(2); P2�C1, 1.782(1);
C1�C2�, 1.409(2); C2�C2�, 1.436(3); C7�C7�, 1.446(3); C7�C8, 1.414(2);
C8�C9, 1.434(2).
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Figure 2 shows that significant structural modifications
occur upon the reduction of the phosphacobaltocenium salt
3[39] to phosphacobaltocene 4. The most striking changes that
involve the phospholyl ligand are a disproportionate increase
in the mean Co�C� bond length (�3.4%) when compared to
Co�P and Co�C� (�0.8% and �2.5%, respectively), an
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Figure 2. A comparison of bond lengths [ä] for the phospholyl ligand in
[CoCp*(2,5-PC4tBu2H2)] (4) (bold) and [CoCp*(2,5-PC4tBu2H2)]�[BPh4]�

(3). Left: intracyclic separations, right: distances to cobalt.

elongated (�1.3%) C��C�� separation and a slightly short-
ened (�0.3%) mean C��C� distance, although this last datum
is not statistically significant at the 3� level. The P�C lengths
are not significantly affected (�0.2%). These perturbations
result in a folding of the phospholyl ligand towards the metal
about the C��C�� axis by 5.7� in 4. Analogous changes of
similar magnitude are also found within the Cp* portion of the
molecule. Distortions of this type reflect the preferred
orientation of the unpaired electron with respect to the
nondegenerate ligand �-orbitals and are well known in more
classical carbocyclic cobaltocene structures in which the
fivefold rotational symmetry of the complex is broken by
the presence of substituents.[41, 42] For 4, they very clearly
indicate that the metal centre has a more antibonding
interaction with the phospholyl �as orbital than with �s

[41]

(Figure 3), thus implying a SOMO with a�� symmetry. This
accords fully with the results obtained from the ADF
calculations presented below.

Figure 3. Phospholyl �-orbitals.

Electrochemistry : Cyclic voltammetry in THF shows that 3
undergoes two (�0.74 V, reversible[39] and �1.85 V, irrever-
sible, SCE) electrochemical reductions and that no oxidation
occurs before the onset of solvent breakdown. These are the
only quantitative data available to date for Group 9 mono-
phosphametallocenes and may be compared with oxidation
data for selected substituted cobaltocene derivatives, which
are given in Table 1. In an effort to gain a more precise
estimate of the electronic perturbation occurring upon

incorporation of a phosphorus
atom into cobaltocenes, we
prepared and measured 1,3-
di-(tert-butyl)cyclopentadienyl-
(pentamethylcyclopentadienyl)-
cobalt tetraphenylborate (5),
which was found to have a

reversible half-wave potential of �1.03 V under conditions
identical to those used for the reduction of 3. In the related
(although semi-irreversible) 18 to 19 VE reduction of phos-
phaferrocenes, the replacement of a cyclopentadienyl CH
group by phosphorus is associated with an anodic potential
shift of about 0.39 V;[43±46] it is clear that the incorporation of
the sp2 phosphorus atom confers greater stabilization upon a
ferrocenide anion than the corresponding cobaltocene
(0.29 V). The anodic potential of 4 relative to [CoCp*2 ] is
reflected in its increased first ionization potential (see below).

NMR measurements : NMR is relatively easy to observe for
classical cobaltocenes,[47] and solution-phase 1H spectra of 4
([D6]benzene, 298 K) give moderately sharp lines. Integration
shows that the phospholyl CH protons lie to high field and the
Cp* and tBu protons to low field of their positions in the
diamagnetic standard 3. All resonances move away from TMS
as the sample temperature is lowered ([D8]THF), with the
largest effects being felt at the Cp* methyl groups (Figure 4).

At room temperature, the Cp* resonance (�� 41.8 ppm) is
found close to the value for [CoCp*2 ] (�� 40 ppm),[48] and the
tBu protons (�� 7.3 ppm) resonate in the region anticipated
for tert-butyl groups in carbocyclic cobaltocenes.[49, 50] How-
ever, the phospholyl CH protons (���15.9 ppm) are only
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Figure 4. Thermal sensitivity of the proton NMR chemical shifts in 4
([D8]THF).

Table 1. First oxidation potentials for selected cobaltocenes (in V vs SCE).

Complex E(ox) Solvent Reference

[Co(NC4tBu2H2)2] � 0.44 MeCN [a]

[Co(C5HPh4)2] � 0.69 THF [b]

[CoCp*(2,5-PC4tBu2H2)] � 0.74 THF this work
[Co(C5H4PPh2)2] � 0.80 MeCN [c]

[CoCp2] � 0.89 DMF [d]

[CoCp2] � 0.94 MeCN [e]

[CoCp*(1,3-C5tBu2H3)] � 1.03 THF this work
[Co{1,3-C5H3(CMe2CH2CH�CH2)2}2] � 1.10 CH2Cl [f]

[CoCp*Cp] � 1.17 DMF [d]

[CoCp*2 ] � 1.47 MeCN [g]

[a] N. Kuhn, M. Kˆckerling, S. Stubenrauch, D. Bl‰ser, R. Boese, Chem.
Commun. 1991, 1368; [b] M. P. Castellani, S. G. Geib, A. L. Rheingold,
W. C. Trogler, Organometallics, 1987, 6, 1703; [c] D. L. Dubois, C. W.
Eigenbrot, Jr., A. Miedaner, J. C. Smart, Organometallics, 1986, 5, 1410;
[d] B. Gloaguen, D. Astruc, J. Am. Chem. Soc. 1990, 112, 4607; [e] J. D. L.
Holloway, W. E. Geiger, Jr., J. Am. Chem. Soc. 1979, 101, 2038; [f] D. Vos,
A. Salmon, H.-G. Stammler, B. Neumann, P. Jutzi, Organometallics, 2000,
19, 3874; [g] J. L. Robbins, N. Edelstein, B. Spencer, J. C. Smart, J. Am.
Chem. Soc. 1982, 104, 1882.



FULL PAPER D. Carmichael, J. C. Green, F. Mathey et al.

¹ 2003 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chemeurj.org Chem. Eur. J. 2003, 9, 2567 ± 25732570

slightly shifted when compared to [CoCp2] (�51 ppm).[51]

1H NMR chemical shifts in simple cobaltocenes are generally
dominated by a positive scalar coupling between metal eg

orbitals and the cyclopentadienyl carbon atom; this is relayed
to the protons through spin polarization induced within the
CH bonds,[47, 52] and the modestly shifted phospholyl CH
resonance in 4 fits with small �as SOMO localization
coefficients at the C� atom. However, the upfield shift would
not be expected for polarization induced by the negligible and
negative electron-spin density found at C� (�0.004 e) by
ADF; therefore, this mechanism seems unlikely to dominate
in 4.

The SOMO node at phosphorus in 4 is reflected in a broad
31P NMR resonance (���122 ppm, �1/2� 670 Hz) lying
98 ppm to high field of the diamagnetic precursor 3. The
upfield shift implies a small negative spin density at the
phosphorus atom[47] and is in qualitative agreement with the
�0.045 e value found in the ADF calculations.

Evans× method determinations[53, 54] give a magnetic sus-
ceptibility (�m) for 4 of 1.69 �B ([D6]benzene, 298 K), which is
close to the spin only value for a single unpaired electron.
Variable temperature determinations ([D8]THF) indicate that
4 respects the Curie law between 200 and 300 K.

Photoelectron spectroscopy : The He I and He II photoelec-
tron (PE) spectra of [CoCp*(2,5-PC4tBu2H2)] are shown in
Figure 5 and ionization energies are given in Table 2. The low-
energy region of the spectrum, bands A ± D, shows a striking
resemblance to those of [CoCp2] and [CoCp*2 ],[55] with IEs
lying between those of the two cobaltocene compounds and
being closer to those of the permethylated cobaltocene. The
first band, A, in the He I spectrum, coincides with the line due
to He being ionised by He II radiation, but its clear presence
in the He II spectrum identifies it unambiguously. Bands A ±
D can thus be assigned by analogy with previous work
(Table 2).

Band E has no analogue in the PE spectra of [CoCp2] and
[CoCp*2 ]. It shows a relative decrease in intensity in the He II
spectrum. This suggests that it arises from a � orbital of the
phospholyl ring that is largely localised on the P atom.

Density functional calculations : Selected bond lengths from
the geometry optimisation of [CoCp*(2,5-PC4tBu2H2)] with
Cs symmetry are shown in Figure 6. Good agreement is found
with the X-ray values. Calculated IEs give reasonable agree-

Figure 5. He I and He II PE spectra of [CoCp*(2,5-PC4tBu2H2)] (4).

ment with experimental values (Table 2), especially in the
lower energy bands. Thus, both structurally and electronically,
the calculation can be assumed to give a realistic picture of the
electronic structure of [CoCp*(2,5-PC4tBu2H2)].

The SOMO, 32a��, is an orbital of a�� symmetry with a node
at the P atom, consistent with the interpretation of the

Table 2. Calculated and experimental IE for [CoCp*(2,5-PC4tBu2H2)] (4), comparison with IE of [CoCp2] and [CoCp*2 ], and assignment of the metallocene
spectra.

Orbital MCp2 IE calcd IE exptl. MCp2

analogue � spin � spin 4 CoCp2 CoCp*2 assignment

32a�� e1g* 5.00 5.02 (A) 5.55 4.71 1A1g

31a�� e2g 6.84 6.49 6.51 (B) 7.15 6.39 3E1g, 3E2g,
3E1g, 1E1g,1E2g,1E1g

41a� e2g 6.80 6.53
40a� a1g 7.13 6.84
30a�� e1u 7.45 7.33 7.77 (C) 8.72 7.55 1E1u, 3E1u, 3E1g

39a� e1g 7.36 7.39
38a� e1u 8.17 8.06
29a�� e1g 8.37 7.85 8.24 (D) 9.92 8.30 1E1g

37a� P � 8.62 8.54 8.89 (E)
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Figure 6. Experimental (bold) and calculated (eclipsed configuration) data
for the phospholyl ligand in [CoCp*(2,5-PC4tBu2H2)] (4). Left: intracyclic
separations [ä], right: distances to cobalt [ä]. Bottom: calculated signs
and magnitudes of phospholyl ligand spin density [e].

crystallographic and NMR data. Its nodal character, Figure 7,
shows it to be similar to an e1g* orbital of cobaltocene. The
SOMO ±LUMO gap is 0.5 eV.

The isosurfaces of two orbitals with significant P character,
37a� and 38a�, are shown in Figure 7. The more stable one is
principally localised on the PC4 ring, but shows a bonding
interaction with the Co atom. Thus the assignment of band E
in the PE spectrum is confirmed. The stability of this
phosphorus-based orbital suggests that coordination through
phosphorus will not be highly favoured. The less stable 38a�
orbital has p� character on the phosphorus atom. The spin
density at P is calculated as �0.045, thus accounting for the
small high field shift found in the 31P NMR spectrum.

Discussion

From the uncomplicated access to monophosphacobaltocene
4, it seems clear that the 2,5-di-tert-butylphospholyl ligand
confers a greater stability upon the 19 VE metallocene
configuration than its polyphospholyl analogues. In detailed
studies of the reaction of CoII compounds with solutions
containing [LiP3C2tBu2], Nixon and colleagues have obtained
a triphospholyl(triphosphacyclopentadiene)cobalt(�) complex
6[56] and a dimetallic cubane derivative 7,[57] but no unequiv-
ocal evidence for a phosphacobaltocene. Instead, they suggest

that 6 is formed from the transient hexaphosphacobaltocene 8
through radical abstraction from the solvent and support their
hypothesis by demonstrating increased yields of triphospha-
diene 6 when doping their reaction mixture with an H source
such as cyclopentadiene.[56] Zenneck and co-workers note that
9, prepared through the coordination and oxidative addition
of the corresponding triphenylstannyltriphosphole to
[CpCo(C2H4)2], may be formulated as a triphosphacobalto-
cene derivative[58] and have also obtained some EPR evidence
for the decomposition of 9 into the reactive triphosphacobal-
tocene 10 upon reaction with florisil in pentane.[26] However,
10 proved too sensitive to allow full characterization.[59]

Finally, although the reaction of the phosphaalkyne tert-
BuC�P with metal atoms generally provides a rich source
of electron-deficient phosphametallocenes,[21, 22, 60, 61] its reac-
tion with cobalt atoms gave complexes 11, 12 and 13[62] rather
than phosphacobaltocenes. With these data, it seems reason-
able to assign a lower stability to polyphosphacobaltocenes
than the monophosphacobaltocene derivative 4.

Most studies concerning simple sandwich phosphametallo-
cenes have involved metals of the iron group and a
comparison of 4 with phosphaferrocenide anions is interest-
ing. The seminal early Fenske ± Hall theoretical treatment of
phosphaferrocenes[63] gave a monophosphaferrocene LUMO
with a� symmetry and a total ligand contribution of about
32%; this may be compared with the a�� SOMO showing 33%
ligand character that is found for the phosphacobaltocene by
ADF. Cyclic voltammetry data for phosphaferrocenes[43±46, 64]

suggest, broadly, that the reversibility of the phosphaferro-
cene reduction wave falls as the number of phosphorus atoms
rises, and Winter and Geiger have recently provided evidence
that the pentaphosphaferrocenide radical anion [Cp*FeP5]�

Figure 7. Isosurfaces for the 32a��, 38a� and 37a� orbitals of [CoCp*(2,5-
PC4tBu2H2)] (4).
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(14) undergoes rapid dimerisation through two ring phospho-
rus atoms.[65] Given the comparatively poor �-acceptor
properties of the monophospholyl ligand with respect to its
polyphospholyl analogues,[60] the stability of these 19 VE
monophosphametallocene derivatives with respect to the
corresponding polyphosphametallocenes seems likely to re-
flect a lesser ligand participation in the SOMO. For 4, the
presence of steric protection about the phosphorus atom and
the C� positions, where the highest phospholyl SOMO density
is found, may provide additional stabilisation.

The simple access to 4 and the wide variety of readily
available phospholide anions[29] implies that phosphacobalto-
cenes and -cobaltocenium salts bearing substitution patterns
that are much more elaborate than 2,5-di-tert-butyl may be
accessible. It seems certain that the lone pairs in complexes
such as 3 and 4 will behave very differently from those in
classical phosphines and from each other. Given the rapidly
growing coordination chemistry of phosphametallocenes, the
possibility that sp2-phosphorus may have a useful role to play
in catalysis[66±69] and the current interest in electroactive
ligands,[70, 71] more detailed studies aimed at understanding
and controlling the properties of 3 and 4 are in progress.

Experimental Section

All operations were performed either by using cannula techniques on
Schlenk lines under an atmosphere of dry nitrogen or in a Braun
Labmaster 130 drybox under purified argon. [CoCp*(2,5-
PC4tBu2H2)]�[BPh4]�[39] and C5H4tBu2

[72] were prepared as described
previously, and magnesium powder (50 mesh) was purchased from
Sigma ± Aldrich. THF and [D6]benzene were distilled from sodium
benzophenone ketyl and pentane from sodium benzophenone ketyltetra-
glyme under an atmosphere of dry nitrogen and stored over activated 4 ä
molecular sieves prior to use. Electrochemical measurements are refer-
enced to SCE and were made on a Digital DEA-1 apparatus at platinum
electrodes under dry argon in THF with a 0.3� Bu4NBF4 electrolyte. NMR
measurements were made on a Bruker AM200 spectrometer and are
referenced to internal C6D5H or C4D7HO and external H3PO4. Mass
spectra were obtained under 70 eV electron impact by using direct inlet
methods on a Hewlett ± Packard 5989B spectrometer. He I and He II
photoelectron spectra were recorded by using a PES Laboratories 0078
spectrometer interfaced to an Atari microprocessor. They were calibrated
with He, Xe and N2.

Theoretical methods : Calculations were performed using density func-
tional methods of the Amsterdam Density Functional Package (ver-
sion 2000.02[73, 74]). Type IV basis sets were used with triple � accuracy sets
of Slater type orbitals, with a single polarisation function added to the main
group atoms. The cores of the atoms were frozen up to 2p for Co, 1s for C

and 2p for P. The generalised gradient approximation (GGA nonlocal)
method was used, by means of Vosko, Wilk and Nusair×s local exchange
correlation[75] with nonlocal exchange corrections by Becke[76] and nonlocal
correlation corrections by Perdew.[77] Ionisation energies were calculated
by direct calculations on the molecular ions in their ground and appropriate
excited states, and subtraction of the energy of the neutral molecule.

Synthesis of 4 : Magnesium powder (1.00 g, 41.1 mmol) suspended in dry,
freeze-pump-thaw-cycled THF (30 mL) was activated by stirring with 1,2-
dibromoethane (ca. 0.30 g, 1.6 mmol) for 15 mins at room temperature.
Powdered 3 (1.00 g, 1.41 mmol) was then added against a nitrogen
countercurrent and stirring was continued for 30 mins until the mixture
was deep red. The solution was pumped to dryness, extracted with dry,
degassed pentane (2� 30 mL) and filtered through dried Celite. After
further evaporation to dryness, air and moisture-sensitive deep purple
single crystals of the product were obtained by sublimation (70 �C, 1�
10�2 mmHg) (0.450 g, 83%). MS (70 eV): m/z (%): 389 (100) [M�], 359
(55), 330 (19), 317 (36) [M��C5H12]; 1H NMR (200 MHz, [D6]benzene):
�� 41.9 (s, �1/2� 145 Hz; Cp*), 7.3 (s, �1/2� 30 Hz; tBu), �15.9 ppm
(s, �1/2� 180 Hz; CH); 31P NMR (80 MHz, ([D6]benzene): ���126 pm
(s, �1/2� 730 Hz); �m

[53, 54]� 1.69 �B ([D6]benzene, 298 K).

Synthesis of 5 : A solution of n-butyllithium in hexane (1.6�, 3.4 mL,
5.44 mmol) was added dropwise to a solution of 1,3-di-tert-butylcyclopen-
tadiene (1.00 g, 5.65 mmol) in THF (30 mL) at 4 �C. After stirring at room
temperature for 2 h, the reaction was cooled to �30 �C, treated with solid
PbCl2 (850 mg, 3.06 mmol) and stirred for 30 minutes. The yellow solution
was treated with solid [{Cp*CoI2}2] (2.00 g, 2.23 mmol), stirred at room
temperature for 30 minutes and evaporated to dryness to give a brown-
yellow solid. Metathesis with NaBPh4 (1.92 g, 5.61 mmol) in MeOH gave
the crude metallocenium salt, which was extracted into CHCl3 and
recrystallised by addition of pentane. Pale rectangular air-stable crystals
of [CoCp*1,3-(C5tBu2H3)]�[BPh4]� were harvested, washed with pentane
and dried in vacuo (yield: 2.55 g, 75%). 1H NMR (200 MHz, [D]chloro-
form): �� 7.39 (brm, 8H; o-C6H5), 7.01 (t, 3J(H,H)� 7.0 Hz, 8H; m-C6H5),
6.87 (t, 3J(H,H)� 7.2 Hz, 4H; p-C6H5), 4.49 (t, 4J(H,H)� 1.65 Hz, 1H;
C�CH), 4.38 (d, 4J(H,H)� 1.65 Hz, 2H; C�CH), 1.75 (s, 15H; CH3),
1.19 ppm (s, 18H; C(CH3)3); 13C NMR (50 MHz, [D]chloroform): �� 164.8
(q, 1J(B,C)� 49.4 Hz, BC), 136.9 (s, Ph), 126.1 (s, Ph), 122.3 (s, Ph), 119.4 (s,
CtBu), 97.3 (s, CMe), 80.2 (s, C�H), 75.2 (s, C�H), 32.5 (s, CMe3), 31.0 (s,
(CH3)3), 12.1 ppm (s, CH3); MS (70 eV): m/z (%): 371 (70) [M��H
�HBPh4]; elemental analysis calcd (%) for C47H56BCo (690.7): C 81.73, H
8.17; found: C 80.81, H 8.14.

Crystal data for 4 : C22H35CoP, Mr� 389.40, orthorhombic, space group
Pnma, a� 11.3090(4), b� 17.7930(4), c� 10.5960(6) ä, V� 2132.14(15) ä3,
Z� 4, 	calcd� 1.213 gcm�3, F(000)� 836. Monochromated MoK� radiation
�� 0.71070, 
� 0.881 cm�1, T� 150 K. Of 3203 independent reflections
with h : �15 to 12, k : �25 to 16, l : 11 to 14� taken from a purple crystal of
about 0.22� 0.22� 0.20 mm and collected on a Kappa CCD diffractom-
eter, 2859 with intensity �2�(I) were refined on F2 using direct methods in
SHELXS. wR2� 0.0991, R1� 0.0342, GOF� 1.036.

CCDC 146295 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/
conts/retrieving.html (or from the Cambridge Crystallographic Data
Centre, 12 Union Rd, Cambridge CB2 1EZ, UK; Fax: (�44) 1233
336033 or email : deposit@ccdc.cam.ac.uk).
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